TA: LEE, Yat Long Luca

Email: yllee@math.cuhk.edu.hk

Office: Room 711 AB1 (Temporary), Room 505 AB1 (Until further notice) Office Hour: Send me an email first, then we will arrange a meeting (if you need it). *Remark: Please let me know if there are typos or mistakes.*

Question 1

Each of the following functions are defined on $[-\pi, \pi]$. Sketch the 2π -periodic extension, find the corresponding Fourier expansion, and discuss the pointwise convergence.

(a)
$$f_1(x) = \begin{cases} x, \text{ if } x \in [0, \pi] \\ 0, \text{ if } x \in [-\pi, 0) \end{cases}$$

(b) $f_2(x) = \begin{cases} -1, \text{ if } x \in [0, \pi] \\ +1, \text{ if } x \in [-\pi, 0) \end{cases}$
(c) $f_3(x) = e^x$

Solution:

(a)
$$f_1(x) = \begin{cases} x, \text{ if } x \in [0, \pi] \\ 0, \text{ if } x \in [-\pi, 0) \end{cases}$$

Sketch¹ of the 2π -extension:

Remark: Those labels are π , not n.

¹Sketched by using https://www.mathcha.io/editor

Fourier expansion:

$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_{1}(x) \, dx = 0 + \frac{1}{2\pi} \int_{0}^{\pi} x \, dx = \frac{\pi}{4}$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f_{1}(x) \cos nx \, dx = \frac{1}{\pi} \int_{0}^{\pi} x \cos nx \, dx = \frac{1}{\pi} \left(\frac{\cos(\pi n) - 1}{n^{2}} \right) = \frac{(-1)^{n} - 1}{\pi n^{2}}$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f_{1}(x) \sin nx \, dx = \frac{1}{\pi} \int_{0}^{\pi} x \sin nx = \frac{1}{\pi} \left(\frac{\sin(n\pi) - n\pi \cos(n\pi)}{n^{2}} \right) = \frac{(-1)^{n+1}}{n}$$

hence

$$f_1(x) \sim \frac{\pi}{4} + \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{\pi n^2} \cos(nx) + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$$

Pointwise convergence:

For $x \in (-\pi, 0)$: $|f_1(x) - f_1(y)| = 0 \le |x - y|$ for all $y \in (-\pi, 0)$; For $x \in (0, \pi)$: $|f_1(x) - f_1(y)| = |x - y|$ for all $y \in (0, \pi)$; For x = 0: $|f_1(x) - f_1(y)| = |f_1(y)| \le |y| = |x - y|$ (since $0 \le |y|$) for all $y \in (-\pi, \pi)$ Then f_1 is Lipschitz continuous at every $x \in (-\pi, \pi)$. By Theorem 1.5, the partial sum sequence $\{S_n f_1(x)\}$ converges to $f_1(x)$ pointwisely for

each $x \in (-\pi, \pi)$.

By observation, we see $f_1(\pi^+) = \lim_{x \to \pi^+} f_1(x) = 0$ and $f_1(\pi^-) = \lim_{x \to \pi^-} f_1(x) = \pi$. Then check:

Pick $\delta = \pi$, then

$$|f_1(x) - f_1(\pi^+)| = 0 \le |x - \pi|$$
 for all $x, 0 < x - \pi < \delta$

and

$$|f_1(\pi^-) - f_1(x)| = |\pi - x|$$
 for all $x, 0 < \pi - x < \delta$

Then $S_n f_1(\pi) \to \pi/2$ as $n \to \infty$. Similarly, $S_n f_1(-\pi) \to \pi/2$ as $n \to \infty$.

(b)
$$f_2(x) = \begin{cases} -1, \text{ if } x \in [0, \pi] \\ +1, \text{ if } x \in [-\pi, 0) \end{cases}$$

Sketch of the 2π -extension:

Fourier expansion:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_2(x) \, dx = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f_2(x) \cos nx \, dx = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f_2(x) \sin nx \, dx = \frac{2}{\pi} \frac{(-1)^n - 1}{n}$$

hence

$$f_2(x) \sim \sum_{n=1}^{\infty} \frac{2}{\pi} \frac{(-1)^n - 1}{n} \sin(nx)$$

Pointwise convergence:

For $x \in (-\pi, 0)$, we have $|f_2(x) - f_2(y)| = 0 \le |x - y|$ for all $y \in (-\pi, 0)$; For $x \in (0, \pi)$, we have $|f_2(x) - f_2(y)| = 0 \le |x - y|$ for all $y \in (0, \pi)$; Then f_2 is Lipschitz continuous at $x \in (-\pi, 0) \sqcup (0, \pi)$ (as f_2 is not continu

Then f_2 is Lipschitz continuous at $x \in (-\pi, 0) \cup (0, \pi)$ (as f_2 is not continuous at 0, then f_2 is not Lipschitz continuous at 0)

By Theorem 1.5, the partial sum sequence $\{S_n f_2(x)\}$ converges to $f_2(x)$ pointwisely for each $x \in (-\pi, 0) \cup (0, \pi)$.

By observation, $f_2(\pi^+) = \lim_{x \to \pi^+} f_2(x) = 1$, $f_2(\pi^-) = \lim_{x \to \pi^-} f_2(x) = -1$. Pick $\delta = \pi$, then we have $|f_2(x) - f_2(\pi^+)| = 0 \le |x - \pi|$ for all $x, 0 < x - \pi < \delta$; $|f_2(x) - f_2(\pi^-)| = 0 \le |x - \pi|$ for all $x, 0 < \pi - x < \delta$. So, by theorem 1.6 $S_n f_2(\pi) \to 0$ as $n \to \infty$. Similarly, $S_n f_2(-\pi)$ and $S_n f_2(0)$ both converges to 0 as $n \to \infty$.

(c) $f_3(x) = e^x$

Sketch of the 2π -extension:

Fourier expansion:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^x dx$$
$$= \frac{e^{\pi} - e^{-\pi}}{2\pi}$$
$$= \frac{1}{\pi} \sinh(\pi)$$

where

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

Next, for convenience, we apply

$$\int e^{ax} \cos(bx) \, dx = \frac{a}{a^2 + b^2} e^{ax} \cos(bx) + \frac{b}{a^2 + b^2} e^{ax} \sin(bx) + C$$

then

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \cos(nx) \, dx$$

= $\frac{1}{\pi} \left[\frac{1}{1+n^2} e^x \cos(nx) + \frac{n}{1+n^2} e^x \sin(nx) \right]_{-\pi}^{\pi}$
= $\frac{1}{\pi} \left[\frac{1}{1+n^2} e^\pi \cos(n\pi) - \frac{1}{1+n^2} e^{-\pi} \cos(-n\pi) \right]$
= $\frac{(-1)^n}{\pi} \frac{2\sinh(\pi)}{1+n^2}$

Similarly, we apply

$$\int e^{ax} \sin(bx) \, dx = \frac{a}{a^2 + b^2} e^{ax} \sin(bx) - \frac{b}{a^2 + b^2} e^{ax} \cos(bx) + C$$

then

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \sin(nx) \, dx$$

= $\frac{1}{\pi} \left[\frac{1}{1+n^2} e^x \sin(nx) - \frac{n}{1+n^2} e^x \cos(nx) \right]_{-\pi}^{\pi}$
= $\frac{1}{\pi} \left[-\frac{n}{1+n^2} e^\pi \cos(n\pi) + \frac{n}{1+n^2} e^{-\pi} \cos(-n\pi) \right]$
= $\frac{n(-1)^{n+1}}{\pi} \frac{2\sinh(\pi)}{1+n^2}$

hence, its Fourier expansion is given by

$$f_3(x) = e^x \sim \frac{\sinh(\pi)}{\pi} + \frac{2\sinh(\pi)}{\pi} \sum_{n=1}^{\infty} (-1)^n \frac{\cos(nx) - n\sin(nx)}{1 + n^2}$$

Pointwise convergence:

For any $x \in (-\pi, \pi)$, we have, by mean value theorem, that $|e^x - e^y| = e^{x_0}|x - y|$ for some $x_0 \in (x, y)$, then $|e^x - e^y| \le e^{\pi}|x - y|$, for any $y \in (-\pi, \pi)$. Thus, it is Lipschitz continuous at any $x \in (-\pi, \pi)$.

By Theorem 1.5, $S_n f_3(x) \to f_3(x)$ for all $x \in (-\pi, \pi)$.

By observation, $f_3(\pi^+) = \lim_{x \to \pi^+} e^x = e^{-\pi}$ and $f_3(\pi^-) = \lim_{x \to \pi^-} e^x = e^{\pi}$. Similar calculation tells us $e^{-\pi} + e^{\pi}$

$$S_n f_3(\pi) \to \frac{e^{-\pi} + e^{\pi}}{2} = \cosh(\pi)$$

as $n \to \infty$. Similar for $S_n f(-\pi) \to \sinh(\pi)$ as $n \to \infty$.

Question 2

Show that the function $f(x) = |x|^{\alpha}$, $x \in [-\pi, \pi]$ is not Lipschitz continuous at x = 0 for any $0 < \alpha < 1$.

Solution:

We argue by contradiction².

Suppose $f(x) = |x|^{\alpha}$ is Lipschitz continuous at x = 0, then by definition, there exists L > 0and $\delta > 0$ such that $|f(x) - f(0)| = ||x|^{\alpha} - |0|^{\alpha}| = |x|^{\alpha} < L|x|$ for all $x \in [a, b]$ and $|x| < \delta$. Following the definition, we have $|x|^{\alpha-1} < L$. But δ can be made arbitrarily small, thus, as $\delta \to 0^+$, we have $x \to 0$ and $|x|^{\alpha-1} \to \infty$, since $-1 < \alpha - 1 < 0$. Then we have $\infty < L$, which is impossible. Hence, f is not Lipschitz continuous at x = 0.

Question 3

Consider the function f(x) = x on $(0, 2\pi]$ and its 2π -periodic extension $\tilde{f}(x) = f(x - 2k\pi)$ for $x \in (2k\pi, 2(k+1)\pi]$, for all $k \in \mathbb{Z}$. Sketch \tilde{f} , find its Fourier series, and discuss the pointwise convergence. Finally, if the Fourier series converges at the point x = 0, what value does it limit to? (Compare with f(x) = x on $[-\pi, \pi]$).

Solution:

Sketch of \tilde{f} :

Fourier series of \tilde{f} :

$$a_0 = \frac{1}{2\pi} \left(\int_{-\pi}^0 x + 2\pi \, dx + \int_0^\pi x \, dx \right) = \pi$$
$$a_n = \frac{1}{\pi} \left(\int_{-\pi}^0 (x + 2\pi) \cos(nx) \, dx + \int_0^\pi x \cos(nx) \, dx \right) = 0$$
$$b_n = \frac{1}{\pi} \left(\int_{-\pi}^0 (x + 2\pi) \sin(nx) \, dx + \int_0^\pi x \sin(nx) \, dx \right) = -\frac{2}{n}$$

thus its Fourier series is given by

$$\tilde{f}(x) \sim \pi - \sum_{n=1}^{\infty} \frac{2}{n} \sin(nx)$$

Pointwise convergence:

On $(0, 2\pi)$, we know that |f(x) - f(y)| = |x - y| for all $y \in (0, 2\pi)$. Thus f is Lipschitz continuous at any $x \in (0, 2\pi)$. By Theorem 1.5, we have $S_n f(x) \to f(x)$ as $n \to \infty$ for any $x \in (0, 2\pi)$.

Consider x = 0. $f(0^+) = 0$ and $f(0^-) = 2\pi$. Pick $\delta = \pi$ and consider $0 < x < \delta$, we have

$$|f(x) - f(0^+)| = |x - 0|$$

and for $-\delta < x < 0$, we have

$$|f(x+2\pi) - f(0^{-})| = |x+2\pi - 2\pi| = |x-0|$$

hence by theorem 1.6,

$$S_n f(0) \to \pi$$

as $n \to \infty$.

Comparison:

Refer to Prof Wan's hand written lecture notes: Lecture 2 and Lecture 3

Question 4

Consider the function $f(x) = \sin(2x)$ on $(0, \pi]$ and extend to an even function $f_1(x)$ on $[-\pi, \pi]$, then further extend f_1 to a 2π -periodic function \tilde{f}_1 as usual. Sketch \tilde{f}_1 . Show that

$$\tilde{f}_1(x) \sim \frac{8}{\pi} \sum_{k=0}^{\infty} \frac{1}{4 - (2k+1)^2} \cos((2k+1)x).$$

Discuss the pointwise and uniform convergence. (Compare with $\sin(2x)$ on $[-\pi, \pi]$).

Solution:

Sketch of \tilde{f}_1 :

Fourier series:

$$a_{0} = \frac{1}{2\pi} \left(\int_{-\pi}^{0} -\sin(2x) \, dx + \int_{0}^{\pi} \sin(2x) \right) = 0$$

$$a_{n} = \frac{1}{\pi} \left(\int_{-\pi}^{0} -\sin(2x) \cos(nx) \, dx + \int_{0}^{\pi} \sin(2x) \cos(nx) \right) = \frac{4((-1)^{n+1} + 1)}{4 - n^{2}}$$

$$b_{n} = \frac{1}{\pi} \left(\int_{-\pi}^{0} -\sin(2x) \sin(nx) \, dx + \int_{0}^{\pi} \sin(2x) \sin(nx) \right) = 0$$

note that for n = 2k, we have $(-1)^{2k+1} = -1$ implies $a_{2k} = 0$ for all $k \in \mathbb{N}$. Thus, we are left with

$$a_{2k+1} = \frac{8}{4 - (2k+1)^2}$$

thus,

$$\tilde{f}_1(x) \sim \frac{8}{\pi} \sum_{k=0}^{\infty} \frac{1}{4 - (2k+1)^2} \cos((2k+1)x)$$

Pointwise Convergence:

f(x) satisfies the Lipschitz condition on \mathbb{R} :

$$|f(x) - f(y)| = \begin{cases} |\sin(2x) - \sin(2y)| & x, y \in (2k\pi, (2k+1)\pi] \\ |\sin(2y) - \sin(2x)| & x, y \in ((2k+1)\pi, 2k\pi] \end{cases} = 2|\cos(2x_0)||x - y| \le 2|x - y|$$

for all $k \in \mathbb{Z}$ and for some $x_0 \in (x, y)$ by mean value theorem. Thus f is Lipschitz on \mathbb{R} .

By theorem 1.5, $S_n f$ converges to f as $n \to \infty$ pointwisely on $[-\pi, \pi]$, and by theorem 1.7, $S_n f$ converges uniformly to f on \mathbb{R} .

Comparison:

The " 2π -periodic expansion" of $f(x) = \sin(2x)$ on $[-\pi, \pi]$ is f(x) itself defined on \mathbb{R} . So the only coefficient of its Fourier series is $b_2 = \pi$, in other words, its Fourier series is exactly $\sin(2x)$.